INFORMATION TECHNOLOGY

Software Surprise

Three Invisible Problems of Weapon System
Software Development

LT. COL.

ith technology advancing

at a rapid pace, yesterday’s

state-of-the-art software is

outdated today. If this were

the only problem facing the
development of DoD weapon systems
software, it would be enough. But more
problems lie ahead —at least three other
critical software issues cause major prob-
lems for program managers, testers, and
ultimately customers.

These three problems are software-in-
duced workload, software system com-
plexity, and software systems costs. Even
though these three problems have an
enormous impact on the overall system,
they are given little visibility because pro-
gram managers rarely realize they exist.

All three of these problems are program-
invisible. What I mean by this, is that
they are rarely tested or even thought
about until after they have become a se-
rious difficulty for the program. The
dilemma is that these software/integra-
tion problems are one of the foremost
reasons for customer dissatisfaction and
increased systems costs.

Software-Induced Workload
Software-induced workload is what a
program is attempting to reduce or avoid
by adding software to the system. With
the complexity of current hardware sys-
tems and the missions they support, soft-
ware is used, primarily, to integrate and
consolidate systems so the equipment
operators can accomplish the mission
with decreased workload and increased
mission effectiveness. The only problem
is, no one has discovered a way to mea-
sure workload.

L. D. ALFORD, U.S. AIR FORCE

Specifically; all the measures we currently
have for workload are qualitative and not
quantitative. In the past, engineers tried
to use quantitative measures such as al-
titude and airspeed capture to measure
workload. Unfortunately, these measures
have nothing to do with workload. For
instance, using a digital altimeter, a test
pilot can fly an aircraft 10 feet. The work-
load is extremely high and even a test
pilot can’t accomplish this task for long,
but according to engineering measures,
the workload would not be that great be-
cause the event can be achieved. This

train of engineering analysis resulted in
the tape altimeters on the C-5, C-141,
and F/FB-111 aircraft. Aviators who have
flown these aircraft will testify to their
“low” workload after they have become
proficient in the systems; however, ana-
lytical tests with other aviators always
prove them wrong,

In spite of this, because there is no us-
able measure for workload, when we try
to measure workload, data from such
analyses are always suspect: the sample
size is rarely large, the statistical confi-

Alford is the Chief of the Test & Evaluation Division, Special Operations Forces, System Program Office. He is a graduate of APMC 98-2, DSMC.

64 PM : MARCH-APRIL 1999

dence is low, and no method exists to
quantitatively measure the workload.
What this means is, when we try to eval-
uate whether, for instance, we want to
reduce the number of crewmembers in
the cockpit, our decision is not based
on analysis and tests, but rather a hope
based on politics and cost of the addi-
tional crewmembers.

The best examples of this are the MC-
130H and the current Air Force glass
cockpits and heads-up displays (HUD).
The MC-130H is one of the best-mis-
sionized aircraft in the world. The pilot
puts the cue on the dot and can fly any
terrain-following profile programmed by
the navigator and the aircraft system. On
the other hand, it is a poor instrument
aircraft. The tape digital displays make
it extremely difficult to fly.

In like fashion, the glass cockpits and
HUDs of Air Force aircraft are based on
similar tape displays. These displays are
great for civil aircraft, which are flown
literally from takeoff to touchdown on
autopilot, but become burdensome
“workload sinks” for military tactical
flights. This workload problem will con-
tinue to be an obstacle until we discover
a method to quantitatively measure
workload. Fortunately, research toward
this end is ongoing, but a majority of
fielded and future systems have been or
are being designed without any clue to
the workload involved.

Another example is radio frequency
changes in aircraft that use digital inte-
grated radio systems. Changing a fre-
quency using the old analog dial
paradigm is relatively simple. The pilot
inputs the frequency by turning a dial
on the console. In a software display, the
pilot must first find the page for fre-
quency entry, then select the proper
place for the entry, and finally, input the
digits from a touch-pad. This is at least
10 times greater workload than the ana-
log dialing system, yet the new paradigm
appears to demand it. Multiply this ex-
ample times the number of system in-
puts the pilot must make to accomplish
any mission. These examples have just
touched the periphery of the problems
associated with workload. Suffice it to

say that software/integrated systems gen-
erally have significantly increased work-
load without a proportional increase in
mission effectiveness.

Software Complexity

Software complexity is the second great
hidden problem in software develop-
ment. Because software affects so many
systems and is so intrusive, it has be-
come impossible to fully test even the
safety-related effects of the software.

When a new software build is installed
in an aircraft, unknowns are rampant,
and the “bugs” are rarely fully discov-
ered even during flight tests. Some prob-
lems lie dormant until the systems are
well deployed.

One example was an Operational Flight
Program (OFP) release on the MC-130H.
This release was supposed to affect only
the terrain-following system of the air-
craft. The aircraft was released for flight
under the assumption that it was okay
as long as the terrain-following system
was not engaged. In the middle of a train-
ing flight, during an engine-out ap-
proach, the crew noticed that the “ball”
(primary {light coordination instrument)
was indicating the opposite of the cor-
rect direction. If this OFP had made it
into the fleet, or a test crew had not been
flying the aircraft, in all likelihood a
smoking hole would have appeared
where a multimillion-dollar aircraft had
once been. Although this example may
appear extreme, hundreds of others, in
and out of flight tests, abound. Soft-
ware/integrated systems increase this
risk, and the risk is proportional to in-
creasing code and increasing integration
complexity.

The C-21 (Lear 35) is another example.
In this aircraft, if an oil pressure circuit
breaker was pulled/popped, certain en-
gine control settings would result in a
fire light on an engine. An operational
crew discovered this problem. Because
ofit, they shut down a good engine and
landed short of their destination. They
happened to get two fire lights, one on
each engine. Luckily, they realized the
indicating system was the source of the
problem before they shut down both en-

gines. The circuit breaker had popped
due to a faulty circuit problem. A sneak
circuit caused the fire warning in the in-
dicating system. The crew and passen-
gers were placed at risk due to the
malfunction of a $10 piece of equipment.
This has been fixed since the incident,
but who knows how many other simi-
lar problems wait to be found? Software
and integration complexity increases
risk.

Software Systems Costs

The third problem is related to the first
two. Software always requires future im-
provements and rewrites. Complex soft-
ware invariably comes with “bugs,” and
the “bugs” are never entirely discovered.
Modifications and fixes add their own
“bugs” resulting in future modifications
and fixes.

Because of software integration and com-
plexity, the cost of fixes, modifications,
and improvements is high. Rarely are
software systems provided with suffi-
cient life-cycle funding for these fixes,
improvements, and modifications. Soft-
ware has become so intrusive that the
simplest components, on many aircraft,
incorporate some software. In fact, even
such things as the clocks, circuit break-
ers, and pressurization systems in most
modern aircraft incorporate or are de-
pendent on software for correct indica-
tion and operation. Most aircraft are now
to some degree fly-by-wire and engine
control-by-wire. This trend in controls
and systems shows no sign of decrease
or change.

Funding must be provided for any soft-
ware system until the decommission of
the system. This is a given that most ser-
vices and program offices have yet to ac-
knowledge. For example, numerous
electronic warfare systems are not ade-
quately funded for software changes, yet
are currently going through major
changes. This has resulted in serious pro-
gram problems such as multiple OFPs
in multiple versions being accomplished
by more than one agency. The resulting
costs are much more than they would
have been if software changes had been
programmed for the life of the system.
The examples of the MC-130H and the

PM : MARCH-APRIL 1999 65

DoD Announces

TOV 100

On Feb. 4 the Department
: of Defense announced that :
¢ the fiscal year 1998 report of :
: “100 Companies Receiving the :
: Largest Dollar Volume of :
Prime Contract Awards (Top :
100)" is now available. Toread :
or download this report or :
: other DoD contract statistics, :
¢ goto http://webl1.whs.osd.
: mil/diorhome.htm on the
¢ World Wide Web.

C-21 resulted in cost increases, which
were not planned and which could have
radically affected the safety of the air-
craft if the funding had not been made
available.

Lessons Learned Simple,
Solutions Complex

The lessons to learn from these three in-
visible software/integration problems
are simple. Their solutions are not. First,
try to evaluate workload when develop-
ing a system. Attempt to use noninte-
grated systems when possible and
especially when workload studies indi-
cate a problem. The DoD must fund re-
search and development to discover
effective quantitative workload measures.
Second, plan and test for as much as
possible and be ready, during all pro-
gram phases, for software problems to
“rear their ugly heads.” Do not be con-
tent with minimal software testing even
when risk is low. Finally, fund software
for the life of the system.

These three issues, software-induced
workload, software system complexity,
and software systems costs are critical,
rarely visible program problems. They
should be primary considerations dur-
ing all program phases. They may be in-
visible now, but unless tamed, they will
drive your program and the capability of
your weapon system.

66 PM : MARCH-APRIL 1999

DOT&E RELEASES
ANNUAL REPORT

he Department of Defense Director of Operational

Test and Evaluation, Philip E. Coyle, announced Feb.

11 the release of his 1998 Annual Report to the Con-

gress and the Secretary of Defense. The report de-
scribes the operational and live-fire testing performed on
160 military systems in 1998 and provides an assessment
of the contribution each weapon system makes to Joint Vi-
sion 2010, the conceptual framework for how U.S. forces wiill
fight in the future.

The report reviews the state of test and evaluation capabil-
ity within the Department and makes recommendations for
investment at major test and training ranges. The report is
at http://mwww.dote.osd.mil on the World Wide Web.

= FE9E Reng

ol L BP0 1 Connasy e
:&T”‘H'hm. TR0 3 Corgres Pty

* Fro8 Assuu i
5 PO, Mdnitiey
‘="'-II|I-I|M_ I'.tn“:

